Using Principles of Conservation Genetics to Inform Propagation

David J. Berg
Department of Biology
Miami University

Use of Propagation for Conservation

- Save species from extinction
- Reintroduce extirpated populations
- Augment extant populations
- Provide individuals for research / education

Goals of Propagation

Create populations that:

- survive in captivity
- have a high probability of survival in the wild
- retain evolutionary potential

Problem

How do we maximize "good" variation

increased survival in the wild maintenance of evolutionary potential

while

minimizing "bad" variation?

loss of variation adaptation to captivity

Population Genetics Refresher

Gene: nucleotide sequence coding for a protein

Allele: one version of a gene

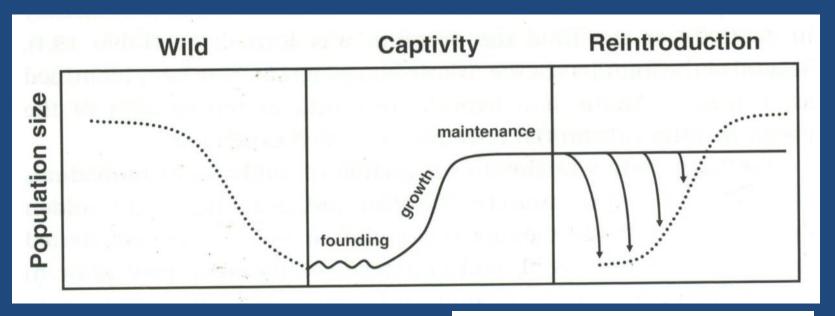
uniparental: haploid

biparental: diploid

homozygous vs. heterozygous

Locus: physical location on a chromosome

Population Genetics Refresher


Mutation: change in nucleotide sequence

Population Genetics Refresher

Evolution: change in allele frequency over time

Hardy-Weinberg equilibrium = no change IF

- No mutation
- Infinite population size
- Random mating
- Closed population
- No selection

Modified from Frankham et al. (2010), page 433

Six stages of captive breeding

- Observe decline, characterize wild population(s)
- 2. Found captive population(s)
- 3. Expand captive population(s)
- 4. Manage captive population(s) over generations
- 5. Choose individuals for reintroduction
- 6. Manage reintroduced population(s)

1. Characterize variation

Total variation within a population is important

Variation among populations must be maintained

Common Markers

- DNA sequences
 - Mitochondrial DNA
 - single copy, maternally inherited
 - neutral
 - Nuclear DNA
 - two copies (maternal & paternal)
 - neutral or under selection
- Microsatellites
 - two copies
 - neutral

Measures of within-population variation

Microsatellites

 N_A = allelic richness

 A_R = rarified number of alleles; standardized

H = heterozygosity (H_O and H_E)

N_e = genetically effective population size

Sequences

Number of haplotypes

k = average number of nucleotide differences

 $\pi = k / sequence length; standardized$

Genetically Effective Population Size

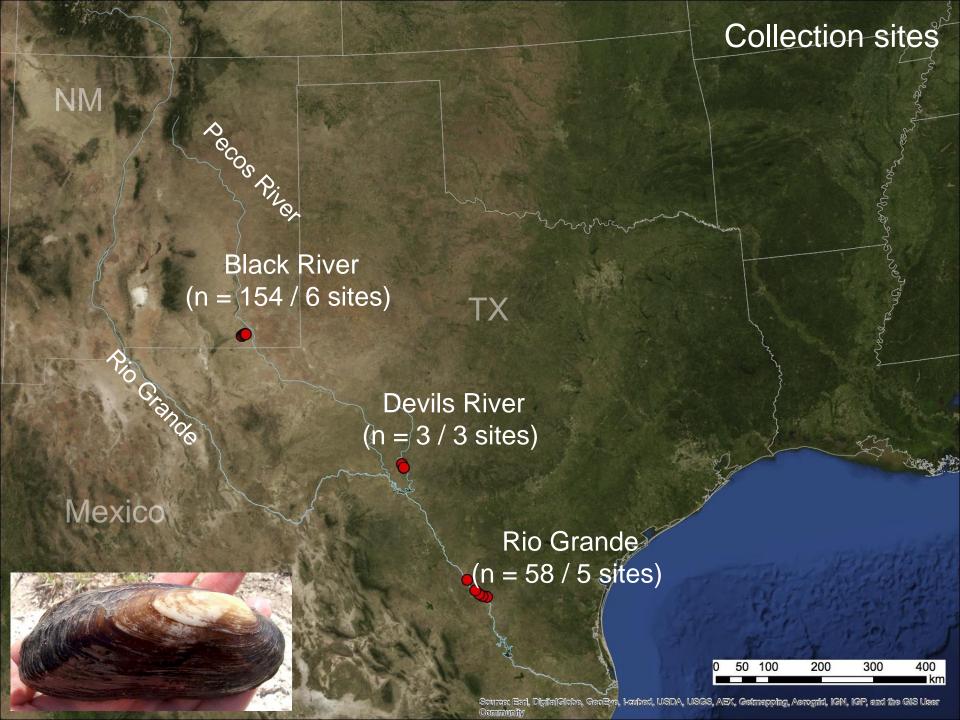
Target population with census size $(N_c) = x$ has genetic variation equal to an "ideal" population of size y.

Constant N_c

50:50 sex ratio

Small, random variation in family size

Measures of among-population variation


Microsatellites

```
    F<sub>ST</sub> = (pooled variation – avg. variation)/pooled variation variation among populations within rivers
    variation among rivers within regions
    variation among regions
```

Assignment tests

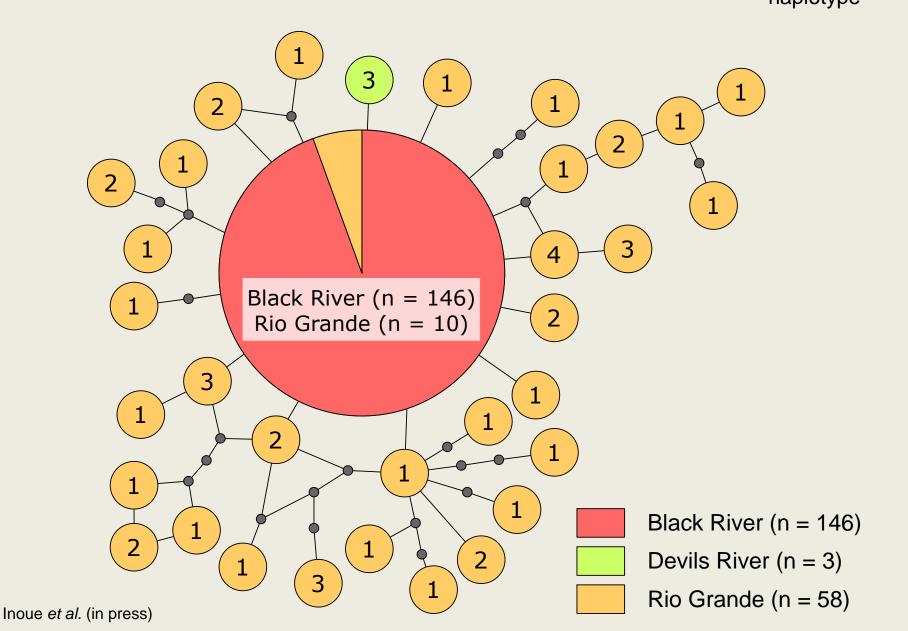
Sequences

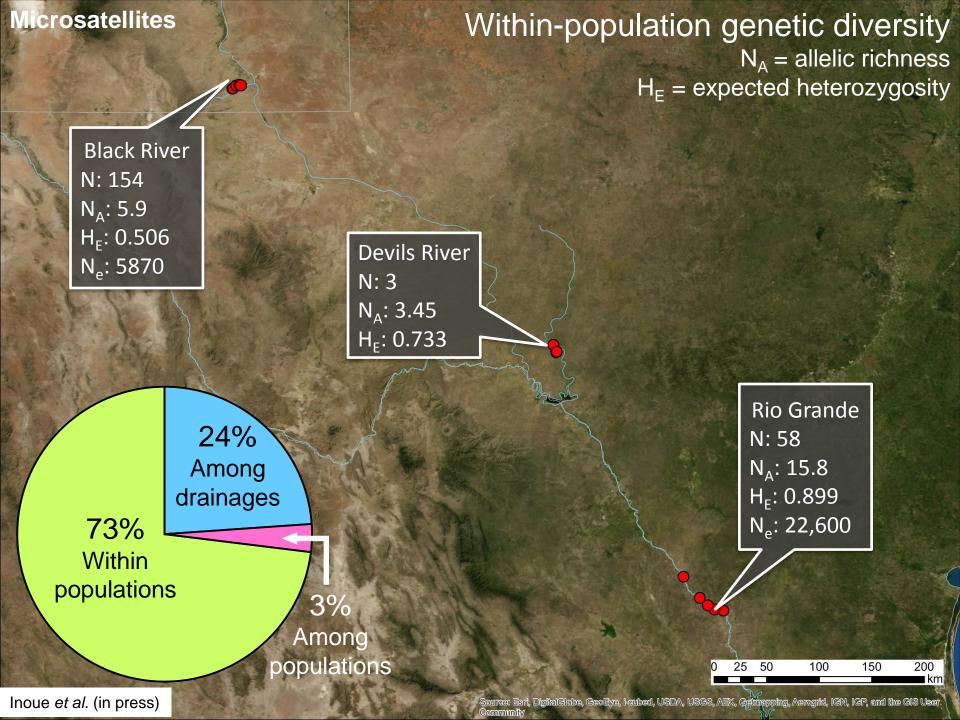
 $\Phi_{ST} = F_{ST}$ analogue, accounting for sequence similarity

18 loci	2 populatio	ns 2	20 inc	lividu	uals p	per po	opula	ition		Pope.	naias	pope	eii (T	exas	horn	shell)																					
200	100 000 000												-						Loc				6000 01.5															
Sample	Population	Tetra1	9-V T	etra1	7-N	Tetra2																																Individual H
BR-1	BR	251	263	156	168	133	137	275	279	424	428	259	259	191	191	151	167	332	332	203	207	212	216	279	279	132	200	309	313	284	284	201	209	357	357	153	161	0.67
BR-2	BR	263	263	156	168	133	133	275	295	428	428	259	259	191	191	151	167	332	332	199	203	212	212	279	279	132	140	313	313	264	264	201	225	357	357	153	161	0.39
BR-3	BR	251	263	164	168	133						259																				225		357	369	157	157	0.56
BR-4	BR	263	263	156	164	133	133	275	275	424	424	255	259	191	191	151	167	328	328	203	203	212	216	279	279	200	200	309	313	264	276	201	201	357	357	157	157	0.33
BR-5	BR	251	263	164	168	133	133	275	275	428	428	259	259	191	191	159	167	328	332	211	211	212	212	279	279	132	132	313	313	264	272	201	201	357	357	153	157	0.33
BR-6	BR	263	263	156	156	133	133	295	295	424	424	259	259	183	191	159	159	328	332	207	211	212	212	279	279	168	168	309	313	276	276	201	209	357	369	153	153	0.33
BR-7	BR	263	263	164	164	133	133	275	275	428	428	259	259	183	191	159	159	332	332	203	203	212	244	279	279	128	200	309	313	272	276	201	201	357	369	157	161	0.39
BR-8	BR	263	263	168	168	133	133	275	275	420	420	259	259	191	191	151	159	328	332	211	211	212	212	279	279	140	200	305	309	272	284	201	201	357	385	157	157	0.33
BR-9	BR	263	263	156	168	133	133	275	275	428	428	259	259	183	191	151	159	332	332	203	211	212	212	279	279	132	200	305	313	264	272	201	225	357	369	157	161	0.56
BR-10	BR	259	263	156	164	133	133	275	275	424	428	255	259	191	191	151	151	328	328	207	207	212	212	279	279	200	200	313	313	264	272	201	201	357	369	161	161	0.33
BR-11	BR	263	263	168	168	133	133	275	275	420	420	259	259	191	191	151	159	328	332	207	211	212	212	279	279	140	200	313	313	272	284	201	201	357	369	157	157	0.33
BR-12	BR	263	263	164	168	133	137	275	275	428	428	259	259	191	191	159	167	332	332	203	215	212	244	279	279	132	200	309	313	268	272	201	201	369	369	153	161	0.50
BR-13	BR	251	251	156	168	133	133	275	295	424	428	259	259	191	191	159	159	328	328	203	211	212	216	279	279	200	200	309	309	264	272	201	225	357	365	153	157	0.50
BR-14	BR					133						259																				201				153	153	0.39
BR-15	BR	251	251	168	168	133								191																		201		357		153		0.39
BR-16	BR		263	168	168	133	137	279	279	428	432	255	259	191	191																	201		357	369	153	153	0.56
BR-17	BR					133		275				259																				209		357	357	153	157	0.61
BR-18	BR	251										259																				201		357	1-0-0-21	153	17.00	0.55
BR-19	BR	251	100000000000000000000000000000000000000		1997																											201		357	1777700	153	170000000	0.44
BR-20	BR	251																														201			357	153	153	0.61
Fall21	RG		231		550 1255		100000		20000000			247												275								205			1000	137	157	0.78
Fall22	RG	271				133				400									344			236					164					265			369	161	173	0.72
Fall23	RG	239																	340													193				161	C 100 C	0.72
Fall24	RG				136		141												328													201			500000	165		0.89
Fall25	RG	267										231							336					259								177			1000000	185	12.00	0.89
Fall26	RG	255	23000000		16.50 E. W.							215																				261				133		0.72
Fall27	RG		259																													209			C11 (22 5	153		0.83
Fall28	RG	255				121						231							344					275								205			T (T (T)	157	(7.70.70	0.72
Fall29	RG	251										247												267		168						197				133		0.83
Fall30	RG	247										247																				201		365	100000	157	200000000	0.94
Fall31	RG		271																364													205			7.70	133	7.77	0.94
Fall32	RG	255					129					243																				173		369	T. (1) (T.)	161		0.72
Fall33	RG	243										227							336					283								217			70000	177	1000	0.89
Fall34	RG	267																														193				177	126.00	0.94
Fall35	RG					125						263																				213			73.0	133		0.89
Fall36	RG	247						247				215							364					267		156						213				185	1000000	0.78
Fall37	RG	263	20.25		NO. 000 TO																											213			The col.	173		0.78
Fall38	RG	259																														213			7.5	173	ATT 1877 NO.	0.89
Fall39	RG	255										263																				277				157		0.78
Fall40	RG	2/9	283	132	136	129	15/	2/9	2/9	412	412	231	263	191	191	155	163	320	320	215	22/	252	256	2/5	291	152	100	31/	3/3	256	304	209	209	349	385	1/3	189	0.72

BR = Black River, Eddy County, NM

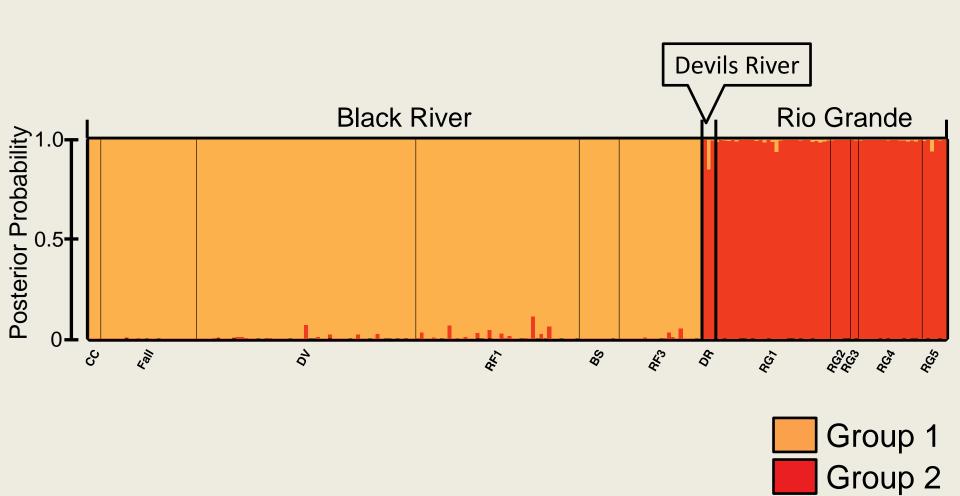
RG = Rio Grande, Webb County, TX


18 loci 2 populations 20 individuals per population


Each entry is a diploid genotype at a locus, consisting of two alleles each defined by the number of 4-nucloetide repeats (i.e., 251 = 251 repeats of a four nucleotide sequence)

Ponenaias noneii (Tevas hornshell)

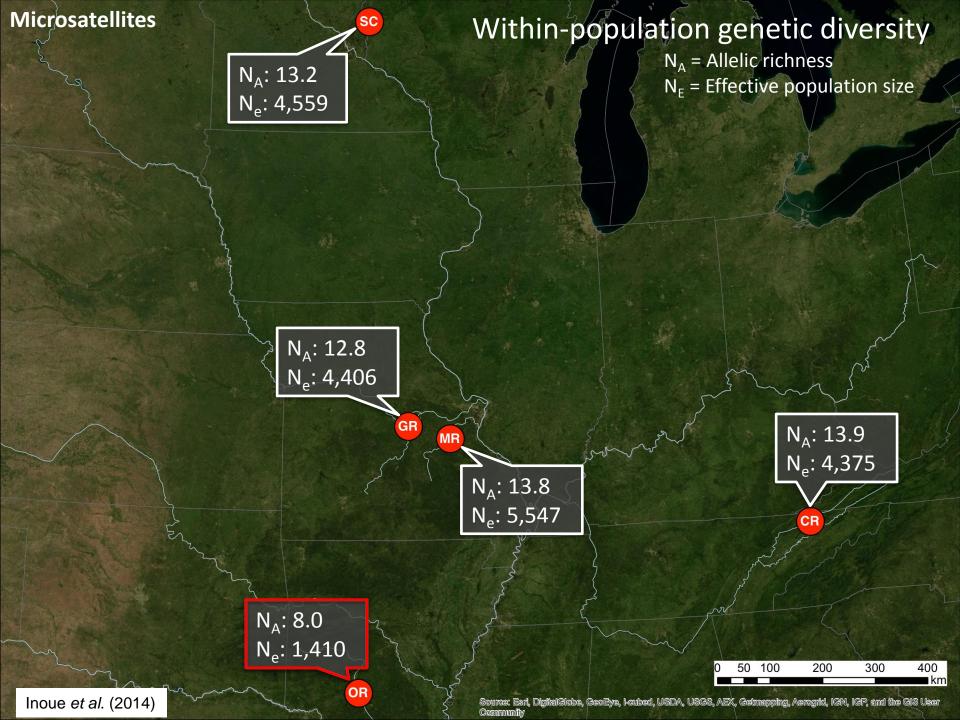
			BR		RG	Within	-population Varia	tion		Among-pop	ulation Variation
Tetra36-N	Allele	#	freq.	#	freq.	Statistic	BR	RG		Statistic	
	179	0	0.000	5	0.125	N _A	3.33	12.78	total # alleles/#loci	F _{ST}	0.257
	183	3	0.075	6	0.150	Ho	0.46	0.82	mean # heterozygous loci		
	187	1	0.025	7	0.175	HE	0.47	0.88			
	191	36	0.900	11	0.275	Fis	0.04	0.07			
	195	0	0.000	5	0.125						
	199	0	0.000	6	0.150						


Parsimony Network of COI $N_{haplotype} = 34$



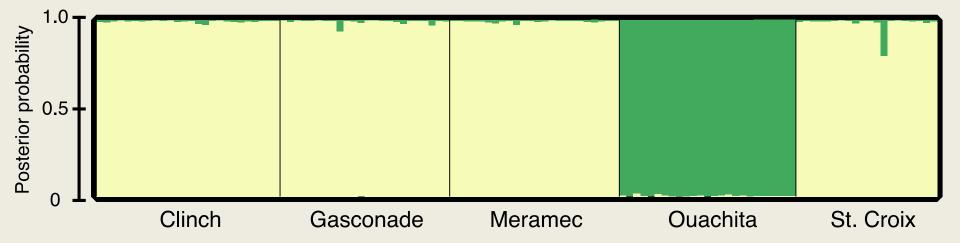
Microsatellites

Structure 2 distinct clusters (k = 2)



EOI Sequences N = 45/5COI Sequences Lineage 1 N = # of individuals with Lineage 1/Lineage 2 haplotypes 11 1 52 23 $\sqrt[3]{N} = 33/7$ Lineage 2 N = 28/6N = 34/1428 17 2 Lineage 1 Lineage 2 N = 0/20200 300 50 100

OR


Source: Esri, Digital Globe, Geo Eye, Houbed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, and the GIS User

400

Structure k = 2

Microsatellites

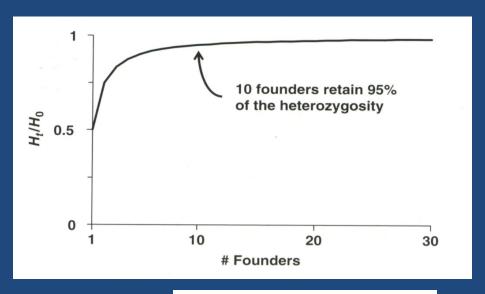
Popenaias popeii

Rio Grande has much greater within-population variation than the Black River Significant among-river variation

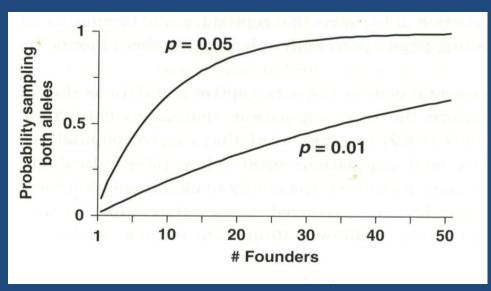
Manage as separate units

Cumberlandia monodonta

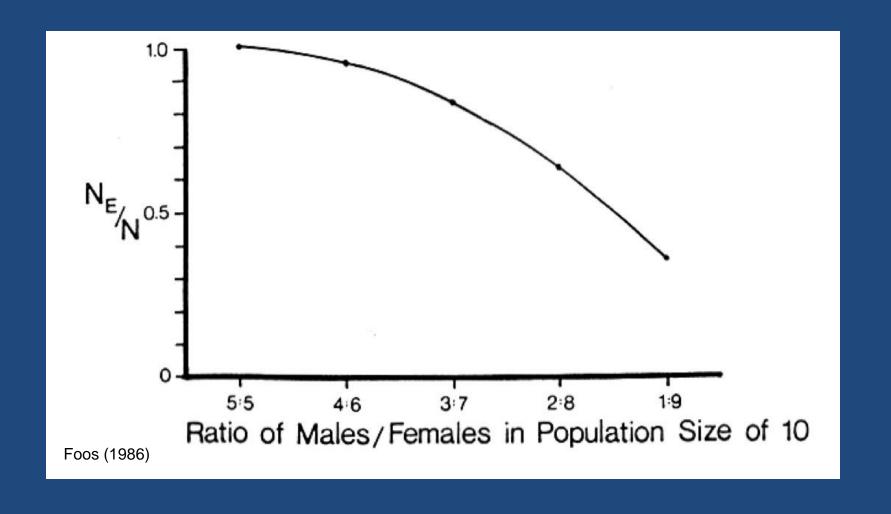
Ouachita population much lower variation Low among-population variation except for Ouachita


Manage as two units, one covering large area

2. Found captive population(s)

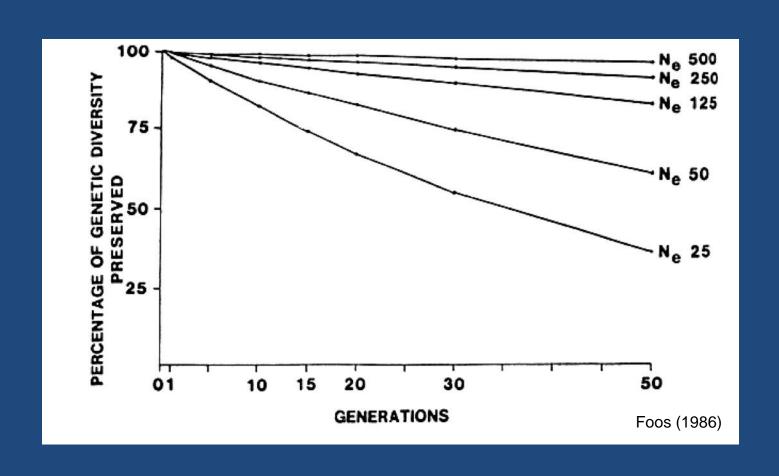

Number of founders determines within-population variation

Demographic features are important


Size of founding population

Frankham et al. (2010), page 436

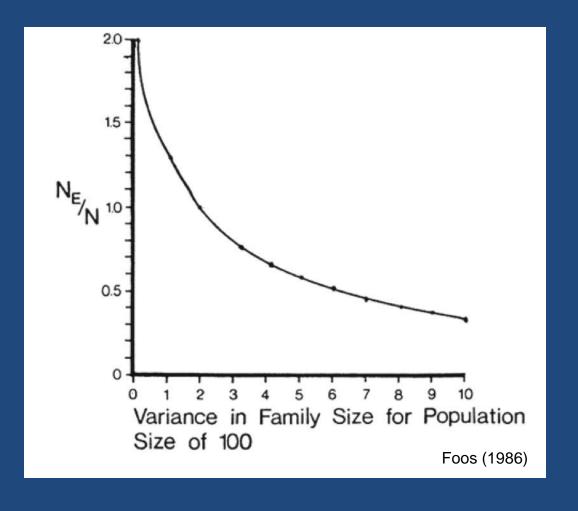
$N_e = N_c$, when 50:50 sex ratio with random mating



3. Expand captive population(s)

Genetic drift = loss of genetic variation

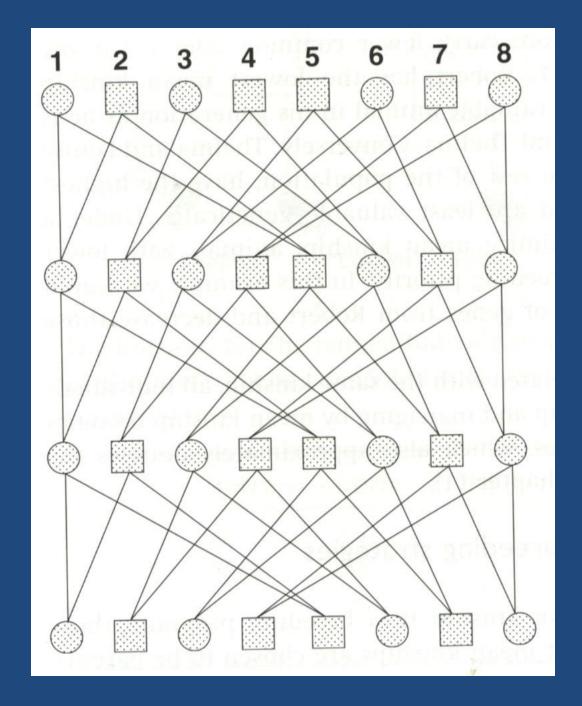
Variance in reproduction must be random


Genetic diversity is lost over time Rate of loss depends on N_e

 $N_e = N_c$ when 50:50 sex ratio with random mating

AND

variance in reproduction is random


4. Manage captive population(s)

Minimize inbreeding

Maintain N_e

Minimize adaptation to captivity

Maximum avoidance of inbreeding

Frankham et al. (2010), page 442

 $N_e = N_c$, when 50:50 sex ratio with random mating AND variance in reproduction is random AND population size is constant

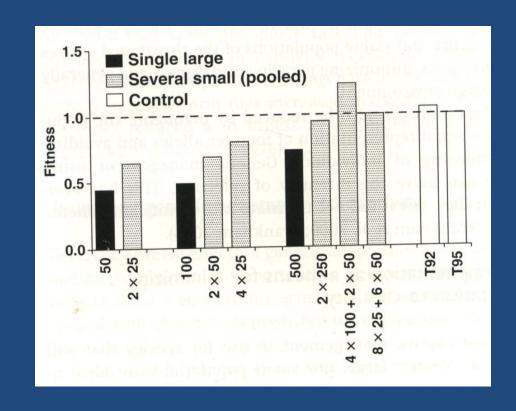
 N_e is *harmonic* mean of N over time long-term $N_e \sim t / \Sigma(1/N)$

N_e and population size

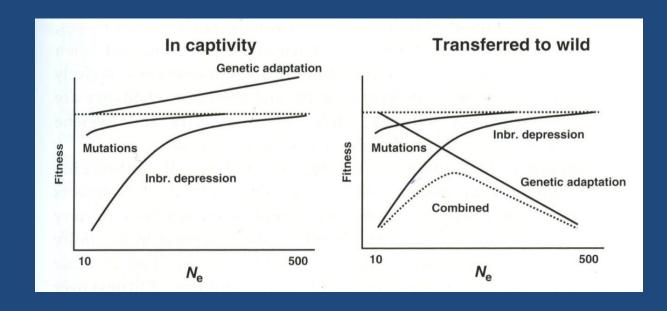
Time	Population Size
1	5000
2	100
3	1000
4	3000
5	6000

$$N_{\rm e} = 427$$

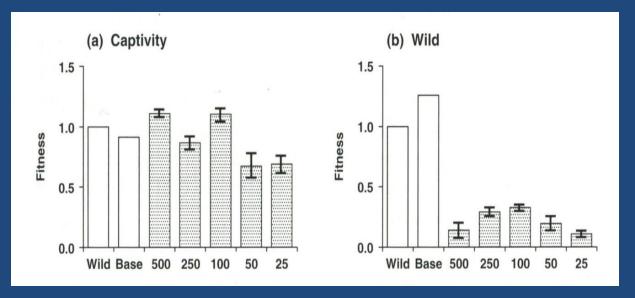
Selection


Selection is on heritable traits

Selection is on the phenotype: genotype + environment


Selection varies with environment natural vs. artificial selection

Several small Single large Time A_4 Pool for reintroduction


SLOSS: Single large or several small populations?

Traits under positive selection in captivity can be deleterious in the wild

Genetic deterioration in *Drosophila*

Frankham et al. (2010), page 457

5. Choose individuals to reintroduce

Distribute evenly among families / lineages

If augmenting, do not swamp out natives

Maintain geographic boundaries

Destroy / repurpose excess individuals

N_e/N_c

Population	N _e	N _c	N _e / N _c
Black River	5,870	48,006	0.12
Rio Grande	22,600	280,000	0.08

Burlakova & Karatayev (2013) Inoue *et al.* (in press)

6. Manage reintroduced population(s)

Protect from abnormal mortality, allow mortality from "normal" sources

Maintain natural habitat

Maintain geographic integrity

Let evolution happen

Table 15.1 How large must populations be to retain genetic 'health'? Various estimates of the required effective population size (N_e) are given, along with the times to recover normal levels of genetic diversity following complete loss of diversity

Goal .	Ne	Regeneration time (generations)	Reference
Avoid inbreeding depression	50		1, 2
Retain evolutionary potential	500 5000 570–1250	$10^2 - 10^3$	1, 3 4 5
Retain single-locus genetic diversity	$10^5 - 10^6$	$10^5 - 10^7$	3
Avoid accumulating deleterious mutations	1000 100 12		4 6 7

References: 1, Franklin (1980); 2, Soulé (1980); 3, Lande & Barrowclough (1987);

^{4,} Lande (1995); 5, Franklin & Frankham (1998); 6, Lynch et al. (1995a);

^{7,} Charlesworth et al. (1993).

N_e is key!

No evolution in culture is the goal:

- 1. No mutation
- 2. Infinite population size
- 3. Random mating
- 4. No gene flow
- 5. No selection

Maximizing N_e will retain evolutionary potential

Reintroduce and let nature take its course

Thanks to the following

Curt Elderkin, Kentaro Inoue, Emy Monroe, Ashley Walters
Brian Lang

Citations

- Burlakova, L. E., A. Y. Karatayev (2013) Survey of Texas hornshell populations in Texas. *Interim Performance Report for Project #*419446. Texas Parks & Wildlife Department, Austin.
- Foos, T. J. (1986) Genetics and demography of small populations. *The Przewalski Horse and Restoration to Its Natural Habitat in Mongolia.*Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/004/ac148e/AC148E00.htm#TOC
- Frankham, R., J. D. Ballou, D. A. Briscoe (2010) *Introduction to Conservation Genetics*, 2nd Ed. Cambridge University Press, England.
- Inoue, K., B. K. Lang, D. J. Berg (in press) Past climate change drives current genetic structure of an endangered freshwater mussel. *Molecular Ecology*
- Inoue, K., E. M. Monroe, C. L. Elderkin, D. J. Berg (2014) Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide-ranging, but endangered, freshwater mussel. *Heredity* 112: 282-290.
- IUCN (1987) The IUCN Policy Statement on Captive Breeding, IUCN, Gland, Switzerland.